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MCNP S(a,@) DETECTOR SCHEME

by

John S. Hendricks and Richard E. Prael

ABSTRACT

An approximate method
lision contributions to point
Prael has been implemented
described and test
sul& that indicate
the nuclear data.

I. INTRODUCTION

results are

to allow S(~,/3) thermal col-
detectors and I)XTRAN by
in MCNP4. The method is
presented, including some r~

inadequacies in the NJOY processing of

A new approximate method to allow S’(O,/3) thermal collision contributions to point

detectors and DXTRAN by Richard E. Prael has been implemented in MCNP1’2 vers :on 4.

The S(O, /3) scattering mode13’4’5is a complete ENDF/B6 representation of thcrma, lt?u-

tron scattering by molecules and crystalline solids which is important in the energy range +

eV down to 10-5 eV. A point detector*’3’7 is a deterministic estimate of the flux a point

in space that is made from source and collision events throughout a Monte flarlo rz. dom

walk. DXTRAN1*7 is an MCNP varianm reduction option that uses point estimates similar

to point detectors to put particles in s~di regions of space (DXTRAN spheres ,vhere ,heir

random walk can be continued.

Until now it has been impossible to use point detectors and DXTRAN in conjunction

with S(O, ~) scattering because the calculation of a net=: ary point detec or/DX’f RAN

quantity, p(p), is impossible. The quantity p(p) is the value of the probability density

function for scattering from the incident random walk particle direction at a polar angle

P = WSOexactly toward the point detector or sampled point on the DXTRA ,V sphere. The

reason this calculation is not possible is that the S(a, B) scattering data is I ~presented as

discrete polar angles, p, at each collision, an? the probability of any of these ang)es pointing

toward a point detector or DXTRAN poivt is infinitesimally small. An exact S(a, :3) - point

detector/DXTRAN scheme may be possible in which at each collision the particle is hacked

up along its random walk trajectory to a point where scattering exactly in the direction
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of the detector/ DXTRAN point is possible. Ther. particle weights could be appro~ riately

adjusted, b’ it this would be horrendously complicated, particularly if the trajectory crossed

any geometric boundaries in between. Prael’s approximate method uses another approach

in which the discrete angles are represented approximately by histogram functions following

certain ru!es [o preserve selected properties. Calculation of the p(p) values from a histogram

distribut~on rather t an from a discrete distribution is then relatively straightforward.

Forty-nine calculations requiring over 40 hours of Cray XMP-48 computer time have

been run to test P~ael’~ approximate scheme. These indicate that the method is working as

intended but that t!.e approximation is sometimes quite poor. Additionally, these calcula-

tions indicate that Ihe discrepancies between detector tallies using the approximate scheme

and tallies using the “exact” random walk are often caused by inadequacies of the data

represent at ion ‘ised in the random walk! In particular, the representation of the scatter-

ing distributions by the NJO P19 code as a few discrete lines (typica/hj seven) is pooT for

distributions which am continuous, particularly isotropic distributions.

First, P, I cl’s approximate method will be described, including its implementation into

MCNP4. Then the test problems and results will be d=cribed and interpreted.

II. PRAEL’S METHOD

The approxiinate method of Ri~’nard l?. Prael for estimating the contributions to de-

tectors or DXTRAN from discrete angle scattering will now be described. First we review

S(m i3) thermal scattering. borrowed largely from the MCNP manuall Chapter 2; then we

examine the pertinent aspects of point detectors and DXTRAN. Prael’s method is pictorially

ihstratecl, and finally his FORTRAN algorithm and its MCNP4 counterpart are presented.

A. s(.~,p) Theoretical Background

The S( a, j3) thermal scattering model is a complete representation of thermal neutron

scattering by molecules and crystalline solids including Bragg scattering. Two processes are

allowed: (1) inelastic scattering with cross section ~in and a coupled energy-angle repre

sentation derived from an ENDF/B S(cx, ~) scattering law, and (2) elastic scattering with

no change in the outgoing neutron energy for solids with cross section a~r and an angular

treatment derived from lattice parameters. The elastic scattering treatment is chosen with

probability a,l/(c,l + ai~ ). This thermal scattering treatment also allows the representation

of scattering by multiatomic molecules (for example, BeO).

For the inelastic treatment, the distribution of secondary ener&s is represented by a set

of equally probable final energies (typically 16 or 32) for each member of a grid of initial

energies from an upper limit of typically 4 eV down to 10–5 eV along with a set of angular
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data for each initial and final energy. The selection of a final energy E’, given an initial

energy E, may be characterized by sampling from the distribution

where JZi and Ei+l are adjacent elements on the initial energy grid,

Ei+l – E
(-’= Ei+l-E~ ‘

N is the number of equally probable final energies, and Ei,j is the #’ discrete final energy

for incident energy Ei.

There are three allowed schemes for the selection of a scattering cosine following selection

of a final energy and final energy index j. In each case, the (i, j)tk set of angular data is

associated with the energy transition E = Ei + E’ = Ei,j.

1.

2.

The data consist of equiprobable histogram cosine bins. For k = 1,.. ., u cosine bin

boundaries and a random number ~, index k is selected by k = (u and p is obtained

by the relation

P = Pk + (g – k/~)(pk+l – W)

In practice, no data for this scattering representation is processed by the NJOY code

and therefore it is unused in MCNP.

The data consist of sets of equally probable discrete cosines ~i,j,k for k = 1,..., u with

v typically 4 or 8. An index k is selected with probability 1/v, and p is obtained by

the relation

3.

P = p~i,j,k + (1 – ~)pi+l,j,k .

The data consist of bin boundaries of equally probable cosine bins. In this case,

random linear interpolation is used to select one set or the other, with p being the

probability of selecting the set corresponding to incident energy Ei. The subsequent

procedure consists of sampling for one of the equally probable bins and then choosing

p uniformly in the bin.

For elastic scattering, the above second and third angular representations are allowed for

data derived by an incoherent approximation. In this case, one ret of angular data appears
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for each incident energy and is used with t h< Jilterpolation procedures on incident energy

described above.

For elastic scattering, when the data have been derived in the coherent approxin-=tion, a

completely different represent at ion occurs, In this case, the data actually stored are the set

of parameters 11~, where

‘el = Dk/E for EBk < E < EBk+l

Clel= o for E < EB1

and ~Ek are Bragg energies derived from the lattice parameters. For incident energy f? such

that EBk ~ E ~ EBk+l,

Pi= Di/Dkfori=l,..., k

represents a discrete cumulative probability distribution that is sampled to obtain index i,

representing scattering from the z‘* Bragg edge. The scattering cosine is then obtained from

the relationship

B. I)etector/DXTRAN Theoretical Background

The contrib~l.tion or tally, T, to a point detector, or ring detector, or the sampled point

on a DXTRAN sphere from each source or collision event is:

T = (W’p(p)e-A)/(2mR2) ,

where

w= particle weight of random walk particle horn source or entering collisi~.n;

J
R

A = c7~(s)ds = total number of mean free paths integrated over the trajectory

f~om the source or collision point to the detector or DXTRAN point;

e-’ = attenuation term.; for transmission from source or collision

point tn detector or DXTRAN point;

R = distance from source or collision point to detector or DXTRAN point;

P(I4 = value of probability y density function atp, the cosine of the polar angle

between the particle trajectory and the direction to the detector.

The probability density function, p(p), is such that
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where F(p) is the probability of scattering betwc~~n -1 and p. Note that p(p) must be

~ormalized such that

Whereas is not a probability it can have any values greater than zero, including

valuesgreater than one. P(p) is a probability and therefore,

o< P(p)<l

As an example, consider the cosine distribution p(p) = p illustrated in Fig. 1. .4ctually,

P(P)= “~!P+l)”
point, then p(p)

In this case

straightfc~~ard.

data, where the

If jAOis the cosine of the polar angle between a collision point and a detector

in the point detector expression is simply

P(P) = P(m) = “Wfo + 1)

with a cosine distribution scattering law, the

However, consider the case encountered with

detector contributions a-e

S(CY,p) thermal scattering

angular distributions are discrete as in Fig. 2. This is a cosine distribution

approximated by eight discrete lines. If p. is again the cosine of the polar angle between

the collision point and the \tetector point, then p(pG) = O unhss p. is one of the discrete

scattering angles, in which ease p(po) = 00. The probability of the scattering angle between

the collision and detector being ex~.<tIy the same as one of the discrete scattering angles is

zero. Thus, co~t ributions to d~<ediwrs and DXTRAN from S(o, @ thermal mllisions have

hitherto been impossible.

c. Prael’s H~k&\goan~ W&hod

Richard i, ~:ael hh devised.. an approximate method Ior getting contributions from

S(O. J) {?Nvwml~~~llisionsto detectors or DXTRAN points by representing the discrete scat-

tering s ~yb as histograms rather than lines. The histograms are chosen by the following

rules:

●

●

The midpoint of the histogram must be centered at the location of the line to preserve

the mean;

Histograms may not overlap;
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1

Fig. 1. Cosine scattering distribution.

1

Fig. 2. Discrete representation of cosine scattering distribution.
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● Histograms may not exc=d the cosine boundaries -1 and +1;

I

● For coherent elastic scattering, the width of the histogram cannot exceed Jp s .1.

For incoherent elastic scattering and inelastic scattering, the histogram width is governed

only by the first three criteria because line spectra are sometimes a poor representation of

the true physical situation. In particular, the NJOY processed S(CY,/3) angular distribution

data frequently represents isotropic or near-isotropic scattering as seven equiprobable lines.

By letting the histogram width expand without the fourth constraint, the histogram ap-

proximation is a more accurate representation of the physics than is the discrete data used

in the random walk as illustrated in Fig. 3. This figure shows hcw Prael’s approximate

histogram method would represent the discrete distribution of Fig. 2. Clearly this approxi-

mation, Fig. 3, is a better approximation to the cosine distribution of Fig. 1 than is the line

distribution of Fig. 2.

For a line cosiue distribution of pl, p2,. ... p. and a polar angle cosine, po, between the

random walk particle trajectory and the detector or DXTRAN point, there are five cases

for deciding whether or not p. is within a histogram and cxmtributes to a detector tally or

DXTRAN sphere or not.

1. Case 1: p2 < po < p..l

This case is illustrated in Fig. 4a. The half-width of the histograms at p = U. and p = 4
are:

Ab = &4h - fb,b – CM) .

If a. s p. < a.+ A., then p. is in the histogram at p = a. and

p(pO) = l/(v2Aa) .

If ~ – & < p. ~ ~, then p. is in the histogram at p = ~ and

p(~o) = l/(v2&.) .

If~+A.<po~h – &, then p. is in neither histogram and

Pbfo) = o .

— that is, there is no contribution to the detector or DXTRAN.
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Fig.3. Histogram approximation of~sine sattering distribution.
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2. Case 2: –l<pl)<pl

This case is illustrated in Fig. 4b. The half-width of the histograms at p = k = pl is:

& = ~min(bl -b, bO-(-l)) .

If bO– & < PO S bo, then PO is in the histogram at p = k and

P(Po)=l/(V2Ab) .

If –1 ~ p. ~ & – Ab, then p. is not in histogram and

P(po)=o ●

3. Case3: PI <pcI<p2

This case is illustrated in Fig. 4c. The half-width of the histograms at p = a. and p = b.

are:

A. = ~min(~ – ao, ao - (-l)) , and

& = +in(h–b,b – UJ .

If q s p. < a.+ A,, then p. is in the histogram at p = a. and

~(#0) = l/(v2AJ .

If bO– Ab < PO S b, then PO is in the histogram at p = bOand

?Oo) = l/(v24) .
If q + A. < p. g ~ – Ab, then p. is in neither histogram and

4. Case 4: pp.l < po < pp

This caseis illustratedin Fig. 4d. The half-width of the histograms at p = a. and p = &

are:

A.=l jmin(~ – ao, aO – al) ,

9
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Fig. 4a. Casel,p2<pO<P”-1

b. b,

● 00

I I \
-1 PQ

1

Fig.4b. Case 2,-l <Po<P1
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~ig.dc. b!Je3, pI<po </.4

Fig.4d. Case 4,pv-1 <PO<PV

I
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and

Ab = ~rnin(l – bo, 60 – (zO) .

If CO~ pO < a.+ A., then p. is in the histogram at p = a. and

p(po) = l/(v2A.) .

If b. – & < PO s bo, then p. is in the histogram at p = b. and

p(p13)=l/(v2&) .

Ifao+&<pOSbj – &, then pG is in neither histogram and

P(PO) = o .

5. Case 5: pv < p~ <1

This case is illustrated in Fig. 4e. The half-width of the histogram at p = a. is:

A. = ~min(l – ao, 60- cl) .

If a. g p. < U.+ A., then p. is in the histogram at p = a. and

p(~o) = 1/(v2AJ .

If a. + A. < PO ~ 1, then p. is outside the histogram and

P(PO) = o “

a. Coherent Elastic Scattering: In the case of coherent elastic scattering the treat-

ment is similar, but the p values are obtained from the Bragg energies, EBi7 and incident

(precollision) neutron energy, E,

QEB1/E .P ~–’=

Whereas the tabulated Bragg energies are increasing,

~B8< k’Bi+l ,
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Fig. 4e. Case 5, p. <p. <1
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the scattering angles are decreasing,

Pi+l = 1 – EBi+l/E <1 – EBi/E ~~i .

.41so, since thescattering angles are sampled from acumulative pmbabilityd istribution

with cumulative probabilities Dl, D2, . . . . Dk, , . . D. the values of p(po) are either zero, or

or

P(Po) = (~k+l – ~k)/(2~v&) .

D. Prael’s Algorithm

Prael’s algorithm to implement the above approximate method is shown in Table I, which

is a listing of his patch to MCNP3B. The five separate cases described abcve are consolidated

by setting default values of al, ao, 6., ~. Table II shows the MCNP4 version of the same

patch, converted to compatibility with the pre-public (LANL floor version) of MCNP4 and

also converted to Tom Godfrey’s MCNP programming style. Further modifications include

reducing the number of divides by multiplying by energy, ERG. Both versions of the patch

can be made to give identical answers even though they apply to radically different versions

of MCNP. All the testinp reported herein was done with the MCNP4 version.

III. Test Problems and Results

Forty-nine calculations requiring over 40 hours of Cray XMP-48 computer time have

been run to test Prael’s approximate scheme. These indicate that the method is working as

intended. Additionally, these calculations indicate that the discrepancies between detector

tallies using the approximate scheme and tallies using the ‘exact” random walk are often

caused by inadequacies of the data representation used in the random walk. In particu-

lar, the repmwentation OJ the scattering distributions by the NJOY code as a jew discrete

lines (typically seven) is poor for distributions which am continuous, particularly isotropic

distributions.

The test calculations can be divided into two families: thick sphere problems and single

collision problems. These two families of problems will now be described along with a

discussion of the associated results.
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TABLE I

S(a, P) PATCH FOR MCNP 3B

1 .Io ~),tao
2 ./ SIMT PATCM TO PERMIT S(A, B) WITH DETECTORS AND DXTRAN
i ●0 7030.9,9
4C RfTUnN IF KCOOE PROBLEM IS N07 SETTLEO.
5
a ●1
7
8 ●1
m
10 ●1
11
12 ●:
93
14 ●1
lB
lg ●r

SB :F(KZKF.PJE .O)RETURN

“Ixcos=o
SB.34

NTVNW 1
SB.41

NTYW2
SE.82

IXCOS--KX
S8.87

IXCOS=KX
58. S4

17 :Cotc-1
18 co c73COa .

Do To(30.40,90. 130, 1400210.410#mo, 300,39S)IPSC-2
;: -1 cTa&.a4sa. -
41 b

22 c
23
24
2s
29
27
21
2s
33

>>>>> IPSC.Q -- NRUTRW FROM
410 CON7!WIC

cs.uoLoo~+voLomvvv+wLo6
:P (N7vN.E0. t) 7HCN

1P (:XCOS) 420,400,S0
ZLSCIP (N7VN.CO.2) THEN

1P (IxCOS) 420,SW,SW
ZLSR

00 To 4C0
twx?

32 c
31 C >>>*> ROUALLV-PRHABLK ANOLR
3t 420 CON7:MJC
:: @.I~cos

LLaNxs(a.ItT)

) COLL:S:W

3? 00 4W”I=l.L~
38 1P (CS.LC.VSS(I-IXCOS)) 50 TO 440
3@ 430 ;~lwg
40

XLSR ‘“ -
R!.17cn(4,1g7)
LL=f:US(C.IW)
N;mbLOf

41 440 CON7:MJC
42 @~-~xcog
43 p@91.o/LL
44 wou=l.o/(vss(u-1)-vss(d))
4s aTo800
48 c
:; C ;;;wC~I;LV”?RD8ASL8 01SCRCT8 AMLRS.

4* t~ (tu7vt4.CO.1) Tncrt
so n:=mTcn(l,ItT)
91 LL.NX5(3,1C7)
q?l N1.~s(4.x~T)o(~L+~)
S3
94

%
97
w

~

:;
84

::
07
0s

11P
)=:Xcos
;=LLWLL
1-10.
I.fo.
I to.
110.
JLLO-1
JLHI*I
IE1-!c.co.l)oo TO sac

l(Ic+Ia)/2
CS.LT.(VSS(IM)*R:=(VSS(M+W )-VSS(IH))))_ TO 520

ItM-----
m 70 510
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TABLE I (cent)

S~cI. 3) P.ATCH FOR .MCSP 3B

OkOM=O 5/( A-AO)
ELSEIF (C.%. GE.8) THEN

oMM=o.5/(80-B)
~1 $E

;il TO 4130

G c >>>>>EXACT TOEA7UEN7 OF COHEr.EN7 ELASTIC SCA77ERIM
91
92
e ~
, 4

9i
97
90
w

lJO
101
101
103

“04
10s
10s
107
10s
Im
1 !0
~,
112
113
114
11s
Ila
117
118
119
120
121
122
123
124

550

9s0

970

980

CON71WE
-—

LLO=tJXS(5. IET)
LHI=JXS(5.1ET)~(2, 1ET)- 1
AO.-10.O
Af8-*9.o
~wlo.o
Cfslo,o
:CCLLC.1

:B-LP!*l
:F(:s.rcogo.l) ~ ~ g~
l-(Ic*IBl/2
;:!:: G7. (*.-2.=vSS(IM-IN7(YSS(tJXS(4, IE7))))/ERO))~ TO 570

~ To b~
:8.IH
Go To SW
cow I Wc
1P {XC GT.LLO) Ol=l.- 2..VSS(IC-$-IN7[VSS(JXS(4. IE7)))j/EDO
1P (IC.QR.LLO) BO=I.-2.*VSS(IC-IN7(V3S(UXS(4, IST))))/CR@
IF (IB.LE.L141) AO=l.-2.=VSS(IB-IN7(VSS(IJXS(4, x2T))))/me
IF (16.LT.LMI) AIc1.-2..VSS(16*IN7(VSS(MS(4(IST)T) )))/gB@
TWLIU=O.09

16

fl=SO-MIN(O:S=(BO-AO),O.!E=(Ell-SO) ,1.-S0.8041..WM)
4=A*MIN( J.Sa(~.Ao),o.5.(Ao.Af ),l.-AOOA*l.,~~m)
IF (CS.LT.A) TMCN

O_=O.!l/(A-AO)
OPA=VSS(10)
1P (lt.@7.LLO) O?A=OPA-MS(19-1)
PR.osA/vss(LM1)

tLS{IP (CS.GT.0) TNSN
●0.%’(s0-0)

M%sil:cl
IP-(I~:tjT:iLOi0P9=OP9-VSS(IC-1)
pQmo~/Vs~(LH1 )

12,
12
12 t
120
12s
130 ●0 Oxm.1
131 ●O ST3A.24
132 ●D St.lS6
133 ./ Em PATCM TO PC~lT S(A.0) US7N DETECTORS M OXTQSN



TABLE II

S(CY,~) PATCH FOR MCN? 4

I .IOEIUT SAOFIX <<<<< S(ALPHA,BETA) OXTRAN ANO OETECTORS >D>>> 6/12/90
2 ● 1
i
4

:
7
8
9
10
11
12
t3
f4
!5
16
17

‘/ ‘--------” ------------------- ‘-------------------------- ‘----- sTuFF
.O,ST. 167 I.INE 9822
●0.S1. 190 L!NE 9825 ELININSTE CALL SA8ERR
WI
./ . . . . .- . . . . . . - - . . . . . . . . . . . . . . . ------ . . . . . . . --- . . . - . . . . . . . . . . . . - SABE2R
=O,Sd t,SJ.30 LINES 10163 - 10192 ELIMINATE ROUTINE SASERR
●/
●I . . . . . . . . - . . . - . -. . --- . - . . . --- . - ..- -- --- . . . . --- . ---- . . . . . ------- DX7RAN
●O,DX.6 LINE 1633a IF(IPSC.EO.9)
●0.OX.69,0X.”.’4 LINES 16401 - 10406

llo LoICL*MXA=(WX( l)=(IPT- 1)-1)
00 140 Ix=t,rmx(lPT)
lF(IOX.NE. IX)NZIVTC( l,IX,IPT)=NZIVTC( l,IX.IPT)+l

●✏
✎✏✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✍✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✎✍✍✍✍✍✍✍✍~A~~~L

●1.S0.7 LINE 20739 AFTER LINE 20739
NTVN-O
Ixcos=o

=1.SB.32 LINE 20764 8EFORE 50 TO(
NTVN= 1

●1,S0.39 LINK 2077f SKFORC W TO(
N7VN=2

●1.S0.46 LINE 2077S BCFORE 00 TO !30
IXCOS=-KX

●1,3S.51 LINC 207C3 OEFORC 00 TO 130
IY.COS=KX

im =/ -
20 ●l ........-.........---------.........-------------------------- TAI.lVO
31 ●D,YO.7 LINE 23266
32 c RETURN 1P KCOCC PRCSLRM IS NC7 SCTTLCO.
33 .o,To.s LINI 23A9@ :F(:psc.tQ,Q)
34 ●O,TD.352.~.397 LINSS 23641 - 23646 IPSC=S CAS[
35 ●/
36 91 . . . . . . . . . . . . . . . . . . --------- -“------- --------- --------- --------
37 ●0.CT.9 LIN2 23730

CALCPS

36 GO TO(10,20.3C, 12G. t60.2~.2Bl ,260.4~,440.4W)1PSC-2
33 •:ocT.l~ LINc 23S7Q BcFoR[ Ipscglo CLocK
Ant!
ii E >>>wE IPSC=S . . NEUTR~ PROU S(A.B) COLLISI~.
42 251 CS=UCLO=UUU*VOW*VW*WLO=UW
43 IF(Ixcos.Eo.o.APa.N7vN.co.2)w To SW
44 IF(xxcos.w.o)a To 2SU
46 IF(Ixcos.Eo.o)ac To 460
4e c
47 c
48
49
60
51 253
52 254
53

68
as
70
71
72
73

4R0

510

EWALLV-PROBA8LR AWE SINS. Ixcos c o
LL9~s(L~s+3@47vN, :17)

:I(::jL;#~-IXCOS).0JI.CS.GT.XSS(LL-IXCOS))t20 TO 4W

It(cs.l C.x&I.lxcos))~ To 254
Psc=l. ,LL-(xss(I-Xx~s-1)-xsS(:-Ixws)))
RETURN

EOUALLV-PSOSASLR 01SCRR78
IF(N7W.NR. l)W TO 460
RI=RTC(KRTC+l.IET)
LL.~s(L~s+3,:g7)
NI=Nxs(LMxs+4. xET)@(LL*2)
GCTOSW
RImQTC(KRTC+401eT)
LL=NXS(LNXSq.ICT)
NX.:L+l

ANaus. IXCOS * O

Ic.Ix~.I
;S=IXCOSOLL+l
If(xo-xc.m. l)m To WO
IH-(:@:B)/2
:::::.LT.(XSS(IH)*RI=(XSS(INW )-XSS(IH))))~ TO S20

00 K! 51s
520 m~nf

00 To Sto
S20 IP(IC.W.ZXCOS)Al=XSS(IC-f)*QIO(XSS(IC-lWI)-XSS(IC-l))

IF(IC.OS.IXCOS)AO-XSS(IC)*R:~(XSS(IC+NI)-XSS(IC))
IF(IS.LE.IXCOS*LL)SO=XSS( IO)+RI=(XSS(IBWI)-XSS(IC) )

17



TABLE II (cent)

IFf IB. Ll. !XCOS+LL)t31DXSS( iB+!J*RI*(XSS(
DA=MIN( .5=(B0-AO), .5.( AO-A~t, f.-AO,AO+l
DE=MIN( .5=(B0-AO), ,5=(@ l-BC). f.-80,80+l.
IF(CS.LT.AO*OA)PSC=.S/(( LL+l J~OA)
IF(CS.GT.BO-OB)PSC..S/( (LL*!)=OB)

86 RETuRN

::
90
9’7
9a
99

9m
101
1Oa
103
104
105
10s
107
10s
10s
110
111
912
1$3
114
1 1s
1 to
117
lla
llm

S90

Sao

S70

580

9s0

S(a,~) PATCH FOR MCNP4

EXACT TREATMENT OF COHERENT ELASTIC SCATTERING. IXCOS=O,
Nc=INT(xss( dxs(Ldxs+401ET) ))
LO=JXS(LdXS+5. IET)-NC
IC=LO- 1
IB=LO+KTC(KKTC+2, ZET)
LH=IS-l
A1=-10.*ERCI
AO=-10.*ERO
8O=1O.=ERO
B1=1O,=ERO

%;:;::o;:~’)m TO 580
IF(CS.W2~tiT.ERO-2.*XSS( IM))OO TO 570
lC=IH
so;: 9s0

Go To Sso
IP(!S.LT.LM)AI=ERO-2.=XSS( 10+1)
IF(IB. LC.LH)40=CR0-2.*XSS( 1S)
IF(Ic.ac. Lo)Bo=ma-a. ●XSS(IC)
IF(IC.07.LO)B1=ERO-2.*XSS( IC-1)
OA=UIN(.5*(S0-AO), .S*(AO-Al),CRO-AO,A@CRO,
o@mMIN(.~-(~-Ao), .S,(~f-So),CRa-coOB@E@60
IF(CS*ERO.LT.A@OA)OO TO 5S0
IF(CS~ERO.LT.00-09)~ ?0 4@0
DX=XSS(IC*M )----- .. .
if(Ic.aT.Lo)ox=ox-xss( mNc-t )
psc=.sOcna=ox/ (XSS(LM+NC)=M)
RETURN
OX.XSS(:B*)
IF(19.OT.LO)OX=OX-XSS( IB+NC=l)
Psc=.5*EBa=oX/(Xss(ww).oA)

120 RETUSN
t~l ●/ REOROCR LABRLS IN ~TINR OXTRAN.
122 ●/ REOROER LABELS IN ROUTINE TALLVO.
*23 ‘/ MOROCR LAMLS IN ROUTINE CALcPg.

18
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A. Thick Sphere Problems

The thick sphere test problem

rials:

Maki.al

Light water

is simply a 12 cm sphere composed of the following mate-

Polyethylene
H in ZrH=
Benzene
Heavy Water
Beryllium metal
Beryllium oxide
Graphite
Zr in ZrH=

MCNP S(a, fl)
designator

LWTR
POLY
H/ZR
BENZ

HWTR
BE

BEO
GRPH
ZR/H

Isotopic

H20
CH2
ZrH
CHZ
D~o
Be

BeO
c

ZrH

Nine problems were run in this family of problems, each for 100,000 histories or 30

minutes Cray XMP48 time, whichever was less. The only difference between the problems

was the substitution of different materials. In each case there was a monoenergetic 10 keV

point source at. the center of the sphere and there were surface, point, and ring detector flux

tah.ies on the outside of the sphere to tally escaping neutrons in a fine energy group structure

from .0001 eV to 20 keV. Room temperature (300”K) S(~, ~) thermal data sets were used

everywhere, and a free gas thermal treatment was used for ncm-S(a, @ collisions, also at

room temperature (.02584 eV). An unambiguous description of this family of test problems

is the MCNP input file which is presented in Table III for the BeO case.

The purpose of the thick sphere problem was to compare surface tallies of the random

walk thermalization to both point and ring detector tallies of the same problem. Results are

presented in Figs. 5-13. Agreement between the random walk surface tally (solid lines), and

the point and ring detector estimates (dashed lines) is excellent.

B. Single Collision Problems

The single collision family of problems consists of 40 problems using the following mate-

rials:

19



TABLE 111

1-
2-
3-
4-
5-
6-
7-
a-
9-

to-
tf -
12-
13-
94-
15-
16-
17-
18-

.

%

::-
23-
24-

.

%

L.4RGE THICK SPHERE PROBLEM INPUT FILE

LARGE BEO SPHERE
1 10. 1-1
2 0 !-2
3 02

1 so 12.
2 SO i6.

Ml 4009 1 8016 1
MT $ BEO.01
PHVS:N 900
TMP 1 2.584-8 0 0
THTME 1.0 E*123
SOEF ERG= .LN)OO*
:MP:N 110
F2:N ?
FC2 LARGE BEO SPHERE
S02 3217.
F5:N oof6. o
F19Z:N O. 16. 0
EO .-10 3.16-10 1.-9 3.16-’3 1.-8 3.16-8 1.-7 3.16-7 1.-6

;.-6 3.-6 4.-6 5.-6 6.-6 7.-6 8.-6 9.-6 9.999-6 1.0001-5 2.-5
NPS 1000U)
PRDMP 2d 1
PRINT



LFWE LHTR SPHERE
*
A 1

ml

—.

,-----

I I

-10-9 m-a 10-7 10-6
ENERGY [tlEV)

Fig. 5.
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Lf3RGE POLY SPHERE
v 1A4 I 1 1 I i 1 1 II I 1 I 1 I 1 1 11 1 I 1 I I 1 l\

● ✍✍✍✍✍✍ ● m-(

f

8 !
1

m
A I I I 1 I 1 I II I 1 1 I 1 J 1 IJ 1 1
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A—99. -m

Fig. 6.
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LFIRGE H/ZR SPHERE
.

4 I 1 1111 1 I 1 1 1 1111 1 I I

L

%

FP-.0.

---- -. :

;
c
I I---IllI~

8 kJ
10-5

ENERGY (MEV)

Fig. 7.
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Lf3RGE BENZ SPHERE
y 1
0

%-9 10-0 10-7 10-6 10-s
ENERGY [FtEVl

Fig. 8.
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LRRGE HWTR SPHERE
I 1 1 1 1 1 111 1 1 1 1 1 I 111 I I 1 I I 1I [

I J 1 I s I 1 I 11 I 1 1 I E v I lY I I I I I I I r

10-8 10-7 10-6 lo-s
ENERGY [!fEV)

Fig. 9.
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LRRGE BE SPHERE
1 1 1 1 1 I Ill t I 1 1 1 1 1 11 1 1

“7

I

1 I I 1 1 I 1 II 1 I i i 1 I 1 #v t I 1 1 I 1 1

10-0 10-7 i&6 10-5
ENERGY (HEVI

Fig. 10.

I
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LflRGE BEO SPHERE

1 1 1 1 1 1 1 1 I L i 1 1 1 I 1 II 1 1 I I 1 I 1 (

I I

(p

?0-8
I I I 1 I II I I I I I 1 I II 1 I I 1 I I I I

10-7 10-6 10-s

Fig. 11.



LFIRGE MPH SPHERE

~~
L

,

I I I I I I I II I J I I I 1 1s1 I I I I I 1 1 Is

B 10-7 10-6 lo-s
ENERGY (HEV)

I

,1

,,
.“ ! : ,:

.,

,., !.
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LRRGE ZR/H SPHERE
*
A 1 1 1 1 1 1 1 I 1 1 I 1 I 1 1 1 1 1 1

E

a)1

-1
%! 1 t I I 1 1 I I 1 I 1 1

-iO-e 10-7
ENERGY (IIEV)

10-6

Fig. 13.
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w

Light water
Polyethylene
H in ZrHz
Benzene
Heavy Water
Beryllium metal
Beryllium oxide
Graphite
Zr in ZrH=
Zr in ZrH=

MCNP S(a, /!3)
designator

LWTR
POLY
H/ZR
BENfi

HWTR
BE

BEO
GRPH
ZR/H
ZR/H

Isotopic
composition

H20
CH2
ZrH
CH2
D20
Be

13e0
c

zrH
ZrH2

Foreach of these materials problems were run at thesource energies of 1 eV, .leV, .01

eV, and .001 eV. The neutron sources were all monodirectional line sources aimed at a tiny

sphere where exactly one collision was forced. Scattering from this collision was then tallied

in 20 equispaced angular cosine bins relative to the incident particle direction in a current

tally on a spherical surface far away from the collision. The current tally W- converted to a

flux tally by dividing by surface areas and is plotted in the histogram plots in Figs. 14a - 53a.

These are compared to point detector tallies plotted in Figs. 14b - 53b. An unambiguous

description of the problem is the MCNP input file for one of this family of problems which

is presented in Table IV.

In many cases, the results indicate excellent agreement between the approximate detector

scheme and the random walk. The low values for the detectors at p = – 1 and p = 1

(detectors : and 20) come from pIaciag the detectors inadvertently on histogram edges and

are to be ignored.

As an example of good agreement between the approximate detector method and the

random walk, consider the case of BeO at .01 eV (Figs. 40a and 40b). The Bragg edges are

all predicted quite well. Another example of good agreement is the forward-peaked angular

distribution of light water at 1 eV (Figs. 14a and 14b).

In some cases, however, the detector-calculated fluxes differ greatly from those of the

random walk. Consider the case of hydrogen in zirmmium hydride (H/Zr) with a .001 eV

source. The random walk results (Fig. 25a) look like a picket fence ranging over two orders

of magnitude of flux; the detector approximation (Fig. 25b), on the other hand, is flat. This

is an isotropic distribution, and the flux at each angle should therefore be uniform as in the

detector result. The picket fence result of the random walk is caused by the representation of

this isotropic distribution as a set of a few discrete lines by the NJOY nuclear data process-

ing code. This represent~.tlon of the data is clearly inadequate for these problems with a high

30
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LHTR .001 EV
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T,\ B1..E IV

SIX(:LE COLLISION FRO13LE\lS !NPUrr FILE

ZRH2 .1 EV
f O.0001 -1

: 01-2
3 02

SO. f
: so 1000.1

Ml 1(X)1 2 0016 1
MT 1 zR/H. ol
PHYS:N 100
TMP1 2.504-8 0 0
TFiTME 1.0 E+123
SOEF POS=O - 1 0 VEC=O 1 0 DIR=l ARA=l ERGmt.E-7
FCL :N -1oo
FC1 ZRH2 .1 EV
Fc5 ZRH2 .1 EV
WP:N 1.E30 1.E20 l.~1 -1
UUN1:N 1.E-200 -1
F1:N 2
cl -.95 181 .9!) .999 1 T
FT1 FRVO1O
c DIVIOE BY 2.uPI*Ro*200W
CM1 3.183029E-6 1.591549E-8 18R 3.119437E-6 O.
c 7.959949E-8
c EG .-103. 16-10 1.-93. 16-9 1.-8 3.10-0 1.-7 3.10-7 1.-0
c 2.-6 :.-6 4.-6 5.-6 6.-6 7.-0 8.-6 9.-6 9.S99-6 1.0001-5 2.-5
NPS 10CUXM
PROW 2tJ 1
PRINT
FO1 C E
F05 F E
F5:N o -looooom

-435.8099 -900 0 0
c 600 -800 0 0

-714.1428 -7000 0
0 -600 600 0
866.0254 -5000 0
916.5t51 -400 0 0
-953.9392 -300 0 0
0 -200 979.79s9 o m
o -100 994.9674 0
Ooiomo
994.98?4 100 0 0
97a.7959 200 0 0

0 300 953.9392 0
916.5151 4mo o
0 500 -866.0254 0
06006000
-714.1428 700 0 0
6008WO0
O W 43S%8899 O
O1ooooo

m o



degree of angular scattering resolution, But the detector approximation, which represents

the disc~ete lines as histograms that are spread out until they touch each other smooths out

the data and provides a better representation of continuous angular distribution functions

than the discrete angle treatment used in the random walk.

tt’e recommend that the representation ojcontinuous distribution by discrete angles by the

NJO Y nuc~ear data processing code be reconsidenwf. There is already a mechanism in MCNP

for utilizing equiprobable bin data that is continuous.

that representation should be used.

IV. Summary

Prael’s histogram method has

DXTRAN estimates from S(a, /3)

been incorporated

thermal collisions.

Where the data is truly continuous,

into MCNP4 to allow detector and

The method has been extensively

tested and appears to be working. For calculations where there are man,y collisions and

angular effects are washed out, both the new approximation and the random walk physics

are adequate. However, for some problems that are sensitive to the scattering distribution

the approximation is actually better than the “exact” random walk because the NJOY

processing of the data into discrete lines is a poor representation of the physics.

v.

1.

2.

3.

4.

3.
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